

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDYALAYA
(University established under section 3of UGC Act 1956)

(Accredited with ‘A’ Grade by NAAC)

Enathur, Kanchipuram – 631 561

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE MATERIAL FOR

Embedded system Design Laboratory

FULL TIME B.E III YEAR, VI- SEMESTER

2021-22

Prepared by

 Mr. L. Sathish Kumar

Assistant Professor

Name of the student :

Reg. No. :

Year/Sem :

Branch :

Subject :

SRI CHANDRASEKHARENDRA SARASWATHI VISWA

MAHAVIDYALAYA

(Accredited ‘A’ Grade by NAAC)

Enathur, Kanchipuram – 631561

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Embedded system Design

Laboratory

VI SEM ECE B Sec

Syllabus Offered by the University

OBJECTIVES:

The student should be made to:

 Learn the working of ARM processor

 Understand the Building Blocks of Embedded Systems

 Learn the concept of memory map and memory interface

 Know the characteristics of Real Time Systems

 Write programs to interface memory, I/Os with processor

 Study the interrupt performance

LIST OF EXPERIMENTS

1. Study of ARM evaluation system

2. Interfacing ADC and DAC.

3. Interfacing LED and PWM.

4. Interfacing real time clock and serial port.

5. Interfacing keyboard and LCD.

6. Interfacing EPROM and interrupt.

7. Mailbox.

8. Interrupt performance characteristics of ARM and FPGA.

9. Flashing of LEDS.

10. Interfacing stepper motor and temperature sensor.

11. Implementing zigbee protocol with ARM.

OUTCOMES:

At the end of the course, the student should be able to:

 Write programs in ARM for a specific Application

 Interface memory and Write programs related to memory operations

 Interface A/D and D/A convertors with ARM system

 Analyse the performance of interrupt

 Write programmes for interfacing keyboard, display, motor and sensor.

 Formulate a mini project using embedded system

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS (3 students per batch)

1. Embedded trainer kits with ARM board 10 Nos

2. Embedded trainer kits suitable for wireless communication 10 Nos

3. Adequate quantities of Hardware, software and consumables

Experiments Offered by the Department

Exp.No Name of the Experiment

1. Study of ARM evaluation system

2. Interfacing ADC and DAC.

3. Interfacing LED and PWM.

4. Interfacing real time clock and serial port.

5. Interfacing keyboard and LCD.

6. Interfacing EPROM and interrupt.

7. Mailbox.

8. Interrupt performance characteristics of ARM and FPGA.

9. Flashing of LEDS.

10. Interfacing stepper motor and temperature sensor.

11. Implementing zigbee protocol with ARM.

INDEX

S.No. Name of the Experiment Page
No.

Signature

AIM :

STUDY OF ARM EVALUATION SYSTEM

To study the ARM Evaluation processor LPC 2148.

TM4C123GXL LanchPad :

TM4C123GXL is the 32-bit ARM Cortex – M4 80 MHz CPU, 256 kB Flash / 32
kB EEPROM, 12-bit SAR adc, Comparators, Timers, DMA, I2C, UART and Integrated
Full & Low speed USB 2.0.

SOFTWARE:

Energia is the open source software to program for TM4C123GXL. This is IDE
(Integrated Development Environment) for programming, compiling and debugging.
Software has facility to compile the program, upload the program into the target
board.

Serial monitor is useful to debug the code in real time response of hardware and
composed circuit.

TM4C123GXL PIN OUT DIAGRAM:

TM4C123GXL – INTERNAL STRUCTURE DIAGRAM

TM4C123GXL – OVER VIEW

ENERGIA SOFTWARE SCREEN:

RESULT :

Thus the study of ARM Evaluation is completed.

AIM

ADC INTERFACING WITH ARM PROCESSOR

To interface convert Analog signal in digital form using ADC in ARM processor.

APPARATUS REQUIED

1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.

3. 1kΩ Resistor – 5 nos
4. Bread Board.
5. Connecting wires

THEORY

Five 1kΩ resistors are connected in series. 5V is supplied and the circuit is closed by

the ground. 5V is applied across 5 1kΩ resistors, so each resistor drops 1v, totally 5v. Test

point in ground, it produces 0 analog voltage, From ground after the first resistor produces 1
analog volt, after the second resistor produces 2 analog volt, after the third resistor produces
3 analog volt, after the fourth resistor produces 4 analog volt, all these test point voltage
nodes are connected with the analog IN pin of ARM processor one by one. Program is written
to read analog value in analog pin using analog read syntax and this received scale value in
program is converted by multiplication factor and can be displayed as 1,2,3,4 volt as digital
numbers. Finally analog voltage across the resistors is displayed as digital voltage value
numbers in ARM processor serial monitor.

PROCEDURE

1. Connections are given as per the circuit diagram.
2. ADC energia program is loaded in ARM processor.
3. Open the serial monitor in energia
4. In circuit connect analog pin to test point - gnd, 1, 2, 3, 4.
5. Observe the respective digital voltage values in serial monitor as 0,1,2,3,4

PROGRAM

int analogPin = PE_2;
int volt;
int val = 0;
void setup()
{

Serial.begin(9600);
}
void loop()
{

val = analogRead(analogPin);
Serial.print("scale value = ");
Serial.println(val);
volt =(5*val) /5000;
Serial.print(volt);
Serial.println(" volts");
delay(1000);

}

CIRCUIT DIAGRAM

INPUT

ANALOG VALUE

(Mutimeter)

OUTPUT

DIGITAL VALUE

(energia serial monitor)

GND 0

1 1

2 2

3 3

4 4

RESULT

Thus the Conversion of Analog to Digital is performed and verified with ARM processor

successfully

AIM

DAC INTERFACING WITH ARM PROCESSOR

To interface and convert Digital to Analog using DAC in ARM processor.

APPARATUS REQUIED

1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.
3. Voltmeter (0-20)v or Multimeter
4. Connecting wires

THEORY

Digital scale value in program is uploaded to ARM processor. This value is passed to
digital to analog converting pin using analog write program line, so equivalent digital value is
obtained at the output of that pin. This is monitored by Voltmeter connected across the same
pin with ground.

PROCEDURE

1. Connections are given as per the circuit diagram.
2. DAC energia program is loaded in ARM processor.
3. In circuit connect digital to analog pin to + terminal of voltmeter
4. Another end of voltmeter to be connected with ground.
5. Observe the respective analog voltage in voltmeter.

PROGRAM – FIXED VALUE

int digitalscalevalue =85;

int analogpin=PB_2;

void setup()

{Serial.begin(9600);

pinMode(analogpin, OUTPUT);

INPUT OUTPUT

85 1 volt

140 2 volt

240 3 volt

}

void loop()

{

analogWrite(analogpin, digitalscalevalue);

Serial.println(digitalscalevalue);

}

PROGRAM - VARIABLE VALUE

int digitalscalevalue =0;

int addvalue = 5;

int analogpin=PB_2;

void setup()

{

pinMode(analogpin, OUTPUT);

}

void loop()

{

INPUT OUTPUT

5 0.1 volt

10 0.2 volt

15 0.3 volt

. .

. .

analogWrite(analogpin,digitalscalevalue);

delay(30);

digitalscalevalue = digitalscalevalue +

addvalue;

if (digitalscalevalue ==255)

{

255 3.3 volt

digitalscalevalue =0;

}
}

CIRCUIT DIAGRAM

RESULT

Thus the Conversion of Digital to Analog is performed and verified with ARM processor

successfully.

LED INTERFACING

AIM

To interface LED with ARM processor.

APPARTUS REQUIRED

1. ARM Processor EK -TM4C123GXL.

2. Computer with energia software.

3. LED.

4. Resister 1K.

THEORY

ARM processor is used for LED ON and OFF. Digital out of processor is connected to the

LED. When digital out is HIGH, LED gets ON, When digital out is LOW, LED gets OFF. Delay

is used in the program in between LED on and off to view the led change of state from ON to

OFF.

PROCEDURE

1. Connections are given as per the circuit diagram.

2. Upload energia program into the ARM processor.

3. Observe the LED ON and OFF like blinking led.

PROGRAM

void setup()

{

pinMode(PA_4, OUTPUT);

}

void loop()

{

digitalWrite(PA_4,HIGH);

delay(100);

digitalWrite(PA_4,LOW);

delay(100);

}

INPUT OUTPUT

PORT PA_4, HIGH LED ON

PORT PA_4, LOW LED OFF

CIRCUIT DIAGRAM

RESULT

Thus the interfacing of LED with ARM processor is done successfully.

AIM

DC MOTOR SPEED CONTROL (PWM)

To interface the DC motor with ARM processor and perform the speed control.

APPARTUS REQUIRED

5. ARM Processor, EK-TM4C123GXL.
6. BC547.
7. 12 V DC Motor.
8. 12 V Power supply.
9. LED.
10. Resister 1K.

THEORY

Pulse width modulation is digital signal changing high and low with respect to time.
The time is varying for high state and low state. The low state is less time dc motor is low
speed. The high is higher then low state dc motor run high speed.

PROCEDURE

1. Connections are given as per the Diagram.
2. For LOW speed : Set ON time 100ms and OFF time 10ms.
3. Upload energia programe to ARM processor.
4. Observe motor speed.
5. For HIGH speed : Set ON time 10ms and OFF time 100ms.
4. Upload energia programe to ARM processor.
4. Observe motor speed.

PROGRAM

void setup()
{
// put your setup code here, to run once:
pinMode(PA_4, OUTPUT);

}

void loop()
{
digitalWrite(PA_4,HIGH);
delay(10);
digitalWrite(PA_4,LOW);
delay(100);

}

INPUT: OUTPUT:

For LOW speed: For HIGH speed:
HIGH time = 10ms HIGH time = 100 ms
LOW time = 100ms LOW time = 10ms

CIRCUIT DIAGRAM

BC547 PIN DETAIL

RESULT

Thus the interfacing of DC motor with ARM processor is done successfully and speed
control of DC motor is performed.

AIM:

RTC INTERFACING WITH ARM

To interface RTC (Real Time Clock – DS1307) with ARM processor.

Apparatus required:

1. ARM processor TM4123GXL
2. RTC – DS1307 with 3v battery
3. 1k resistor – 2 nos

RTC DS1307:

Real-time clock (RTC) counts seconds, minutes, hours, day of the week, date of the month,
month, and year with leap-year. Full binary-coded decimal (BCD) clock/calendar and 56-byte, battery-
backed, nonvolatile (NV) RAM for data storage. Two-wire serial interface are SDA, SCL. The clock
operates in either the 24-hour or 12-hour format with AM/PM indicator. DS1307 has a built-in power
sense circuit that detects power failures and automatically switches to the battery supply.

PROCEDURE:

1. ARM processor USB is plugged with computer.
2. SDA(5), SCL(6) pin of DS1307 is connected with the SDA(PD_1), SCL(PD_0) pin of ARM
processor.
3. Pull up resistors each 1k ohms to be connected in SDA, SCL and ended with common 5v.
4. Load the program into ARM processor, open the serial monitor in energia.
5. Setup part of program has settime function, this sets the seconds, minutes, hours, day, date, month
and year. This to be done only once when new RTC is used, then settime to be comments because
every time of program upload should not set time.
6. Loop part of the program reads the seconds, minutes, hours, day, date, month and year from RTC
memory from 0 to 7 address again and again.
7. Reading calendar values can be viewed in serial monitor of energia.

PROGRAM:

#include "Wire.h"
#define DS1307_I2C_ADDRESS 0x68
void setup()
{

Wire.begin();
Serial.begin(9600);
// set the initial time here:
// DS1307 seconds, minutes, hours, day, date, month, year
//setDS1307time(40,07,11,6,20,8,16);

}
void loop()
{

displayTime(); // display the real-time clock data on the Serial Monitor,
delay(1000); // every second

}

// Convert normal decimal numbers to binary coded decimal
byte decToBcd(byte val)
{

return((val/10*16) + (val%10));
}
// Convert binary coded decimal to normal decimal numbers
byte bcdToDec(byte val)
{

return((val/16*10) + (val%16));
}
void setDS1307time(byte second, byte minute, byte hour, byte dayOfWeek, byte dayOfMonth, byte
month, byte year)

{
// sets time and date data to DS1307
Wire.beginTransmission(DS1307_I2C_ADDRESS);
Wire.write(0); // set next input to start at the seconds register
Wire.write(decToBcd(second)); // set seconds
Wire.write(decToBcd(minute)); // set minutes
Wire.write(decToBcd(hour)); // set hours
Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday, 7=Saturday)
Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
Wire.write(decToBcd(month)); // set month
Wire.write(decToBcd(year)); // set year (0 to 99)
Wire.endTransmission();

}
void readDS1307time(byte *second, byte *minute, byte *hour, byte *dayOfWeek, byte *dayOfMonth,
byte *month, byte *year)
{

Wire.beginTransmission(DS1307_I2C_ADDRESS);
Wire.write(0); // set DS1307 register pointer to 00h
Wire.endTransmission();
Wire.requestFrom(DS1307_I2C_ADDRESS, 7);
// request seven bytes of data from DS1307 starting from register 00h
*second = bcdToDec(Wire.read() & 0x7f);
*minute = bcdToDec(Wire.read());
*hour = bcdToDec(Wire.read() & 0x3f);
*dayOfWeek = bcdToDec(Wire.read());
*dayOfMonth = bcdToDec(Wire.read());
*month = bcdToDec(Wire.read());
*year = bcdToDec(Wire.read());

}
void displayTime()
{

byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;
// retrieve data from DS1307
readDS1307time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month, &year);
// send it to the serial monitor
Serial.print(hour, DEC);
// convert the byte variable to a decimal number when displayed
Serial.print(":");
if (minute<10)
{

Serial.print("0");
}
Serial.print(minute, DEC);
Serial.print(":");
if (second<10)

{
Serial.print("0");

}
Serial.print(second, DEC);

Serial.print(" ");
Serial.print(dayOfMonth, DEC);
Serial.print("/");
Serial.print(month, DEC);
Serial.print("/");
Serial.print(year, DEC);
Serial.print(" Day of week: ");
switch(dayOfWeek)
{

case 1:
Serial.println("Sunday");
break;

case 2:
Serial.println("Monday");
break;

case 3:
Serial.println("Tuesday");
break;

case 4:
Serial.println("Wednesday");
break;

case 5:
Serial.println("Thursday");
break;

case 6:
Serial.println("Friday");
break;

case 7:
Serial.println("Saturday");
break;

}
}

CIRCUIT DIAGRAM:

INPUT:

setDS1307time(40,07,11,6,20,8,16);

feed parameters in program line as

seconds, minutes, hours, day, date, month, year

(this is sample values, current time value to be set)

40 – seconds

07 – minutes

11 – hours

6 – day (FRIDAY)

20 – date

8 – month

16 - year

OUTPUT:

11:07:40 20/8/16 Day of week: Friday

11:07:41 20/8/16 Day of week: Friday

11:07:42 20/8/16 Day of week: Friday

11:07:43 20/8/16 Day of week: Friday

11:07:44 20/8/16 Day of week: Friday

11:07:45 20/8/16 Day of week: Friday

.

.

.

.

RTC MEMORY ORGANISATION:

DS1307 BLOCK DIAGRAM

RESULT:

Thus the interfacing of Real Time Clock with ARM processor is performed and calendar value is
displayed.

KEYBOARD INTERFACING WITH ARM PROCESSOR

AIM

To interface keyboard with ARM processor

APPARTUS REQUIRED

11. ARM Processor EK -TM4C123GXL.

12. Computer with energia software.

13. 3x3 matrix keyboard.

THEORY

Keyboard is scanned and the pressed key is detected then it is printed. When the
columns pins of ARM processor is set in output mode, 5v is supplied by default to this pins.
10k resistor is connected in each column and another end of all this resistor is connected to
ground. To start scanning, Column1 is set as high, remaining columns set as low, so 5v is
available in column1 alone. When scanning all the rows, if any key is pressed in row1 will
received 5v in row1, so column1 row1 key is the pressed key, it is assumed as value of this
position is 1, so 1 is printed. If row2 key is pressed, 5v in column1 is received in row2, so the
pressed key is column1 row2, it is assumed as 4 as it is the 3x3 matrix, this process is
continued to row3. Next step column2 is enabled by setting it as high and all the rows are
scanned and it key values are assumed like 2,5,8 if it is pressed.

PROCEDURE

1. Connect 3 digital lines from ARM processor to row lines of keyboard
2. Connect another 3 digital lines from ARM processor to Columns line of keyboard
3. Upload energia program to processor.
4. Open serial monitor in computer.
5. Press any key in keyboard and observe that the same key is displayed in serial monitor.

PROGRAM

Int C1= PA_5;
Int C2= PA_6;
Int C3= PA_7;

Int R1= PE_1;
Int R2 = PE_2;
Int R3 = PE_3;

void setup()
{
pinMode(C1, OUTPUT); // c1
pinMode(C2, OUTPUT); // c2
pinMode(C3, OUTPUT); // c3
pinMode(R1, INPUT); // r1
pinMode(R2, INPUT); //r2
pinMode(R3, INPUT); //r3
Serial.begin(9600);

}

void loop()
{

delay(150);

// C1- column 1 scanning
digitalWrite(C1, HIGH);
digitalWrite(C2, LOW);
digitalWrite(C3, LOW);

if(digitalRead(R1)==HIGH)
{

Serial.println("1");
}
if(digitalRead(R2)==HIGH)
{

Serial.println("2");
}
if(digitalRead(R3)==HIGH)
{

Serial.println("3");
}

// C2 - column 2 scanning
digitalWrite(C1, LOW);
digitalWrite(C2, HIGH);
digitalWrite(C3, LOW);

if(digitalRead(R1)==HIGH)

{
Serial.println("4");

}

if(digitalRead(R2)==HIGH)
{

Serial.println("5");
}

if(digitalRead(R3)==HIGH)
{

Serial.println("6");
}

// C3 - column 3 scanning
digitalWrite(C1, LOW);
digitalWrite(C2, LOW);
digitalWrite(C3, HIGH);

if(digitalRead(R1)==HIGH)
{

Serial.println("7");
}

if(digitalRead(R2)==HIGH)
{

Serial.println("8");
}

if(digitalRead(R3)==HIGH)
{

Serial.println("9");
}

}

INPUT OUTPUT

Key to be pressed in Keyboard 2 – is displayed in serial monitor
If 2 is pressed

CIRCUIT DIAGRAM

RESULT

Thus the keyboard interfacing with ARM processor is done and pressed key is verified
successfully.

AIM

LCD INTERFACING WITH ARM PROCESSOR

To interface LCD with ARM processor and display the text.

APPARATUS REQUIRED

1. ARM processor - EK-TM4C123GXL

2. Computer with energia software
3. LCD 16x2
4. 10kΩ variable resistor – 1.
5. Separate 5V supply.

THEORY

VSS – GND
VDD – 5V (separate supply not from ARM processor)

V0 –3 wires 10kΩ pot, top wire to 5v, bottom wire to ground, middle wire to V0

RS – to arm processor digital pin
RW – to GND
E – to arm processor digital pin
D4,D5,D6,D7 – to arm processor digital pin

To glow up internal light of LCD
A – Anode to 5V supply
K – Cathode to GND

V0 – connected to 10kΩ pot, this is used to change brightness of LCD display.

ARM processor send RS-Reset and E-Enable signal to LCD display.
Then it sends the 4 bit digital data to LCD, to display text.

PROCEDURE

1. Connection are given as per the circuit diagram.
2. Separate 5V supply to be used in LCD display, ARM processor GND to

connected to GND of separate 5v power supply.
3. Varying 10kΩ pot in V0 brightness of LCD is tuned.
4. LCD display program in energia is loaded to the ARM processor.
5. Observe the text displayed in LCD display

PROGRAM

#include <LiquidCrystal.h>
Int RS = PA7;
Int EN = PA6;
Int D4 = PA5;
Int D5 = PB4;
Int D6 = PE5;
Int D7 = PE4;
LiquidCrystal lcd(RS,EN,D4,D5,D6,D7);

void setup()
{

lcd.begin(16, 2);
}

void loop()
{

lcd.setCursor(0, 0);
lcd.print("LCD TEST");
lcd.setCursor(0, 1);
lcd.print("EMBEDED LAB");

}

CIRCUIT DIAGRAM

INPUT OUTPUT
“LCD TEST” in row0 LCD TEST
“EMBEDED LAB” in row1 EMBEDED LAB

RESULT

Thus the interfacing LCD display with ARM processor is done and text is
displayed in LCD

AIM:

EPROM INTERFACING

To write and read data from EEPROM interfaced with ARM processor.

Apparatus required:

1. ARM processor TM4123GXL
2. 24C02 - EPROM
3. 1k resistor – 2 nos

EPROM:

24C02C is a 2K bit Serial Electrically Erasable PROM with a voltage range of 4.5V to 5.5V. It
has a single block of 256 x 8-bit memory, It means 256 address location each has the capacity to store
8 bit, 256x8 = 2048 bit.

PROCEDURE:

8. ARM processor USB is plugged with computer.
9. SDA(5), SCL(6) pin of EPROM is connected with the SDA(PD_1), SCL(PD_0) pin of ARM
processor.
10. Pull up resistors each 1k ohms to be connected in SDA, SCL and ended with common 5v.
11. WP of EPROM to be connected in GND to enable both write and read operation in EPROM.

12. Load the program into ARM processor, open the serial monitor.
13. Setup part of program writes the data in EPROM memory from 0 to 256 address.
14. Loop part of the program reads the data from EPROM memory from 0 to 256 address again
and again.
15. Writing data and reading data output can be viewed in serial monitor of energia.

PROGRAM:

#include <Wire.h>

void setup()

{
Wire.begin();
Serial.begin(9600);
Serial.println("Writen to memory!");
for(int i = 0; i < 100; i++)
{
eeprom_i2c_write(B01010000, i, ’A’+i);
Serial.print(i);
Serial.print(" - ");
Serial.print(’A’+i);
Serial.print("\n");
delay(100);

}
}

void loop()
{

Serial.println("Reading from memory!");
for(int i = 0; i < 7; i++)
{

byte r = eeprom_i2c_read(B01010000, i);
Serial.print(i);
Serial.print(" - ");
Serial.print(r);
Serial.print("\n");
delay(500);

}
}

MEMORY

ADDRESS

DATA

(WRITING)

0 65

1 66

2 67

3 68

. .

. .

. .

256

MEMORY

ADDRESS

DATA

(READING)

0 65

1 66

2 67

3 68

. .

. .

. .

256

void eeprom_i2c_write(byte deviceaddress, byte memory_addr, byte data)
{

Wire.beginTransmission(deviceaddress);
Wire.write(memory_addr);
Wire.write(data);
Wire.endTransmission();

}

byte eeprom_i2c_read(int deviceaddress, int memory_addr)
{

Wire.beginTransmission(deviceaddress);
Wire.write(memory_addr);
Wire.endTransmission();

Wire.requestFrom(deviceaddress, 1);
if(Wire.available())
return Wire.read();

else
return 0xFF;

}

CIRCUIT DIAGRAM:

INPUT: OUTPUT:

SDA (Serial Data)
This is a bidirectional pin used to transfer addresses and data into and data out of the device. It is an open drain

terminal; therefore, the SDA bus requires a pullup resistor to VCC (typical 10 k for 100 kHz, 2 k for 400 kHz).

SCL (Serial Clock)
This input is used to synchronize the data transfer from and to the device.

A0, A1, A2
The levels on these inputs are compared with the corresponding bits in the slave address. The chip is selected if
the compare is true. Up to eight 24C02C devices may be connected to the same bus by using different Chip
Select bit combinations. If A0, A1, A1 are 0,0,0, it is the first device, so combination of three line upto 1,1,1 eight
devices can be connected.

WP
This is the hardware write-protect pin. It must be tied to VCC or GND. If tied to Vcc, the hardware write protection is
enabled. If the WP pin is tied to GND the hardware write protection is disabled.

DEVICE ADDRESSING:

RESULT:

Thus the writing and reading the data from EEPROM with ARM processor is performed.

AIM

IMPLEMENTING INTERRUPT IN ARM PROCESSOR

To implement interrupt in ARM processor.

APPARATUS REQUIRED
1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.
3. LED – 3 nos
4. Bread Board.
5. Connecting wires

THEORY
Two interrupt ports are available in ARM processor. Two interrupt ports are

PUSH1, PUSH2. PUSH1 is linked with PF4 and PUSH2 is linked with PF0, so
external switch is to be connected with PF4 to trigger the PUSH1 interrupt, and PF0
for PUSH2.

SW1 and SW2 switch are present in the ARM target board, SW1 can be used
instead of connecting external switch to PF4 to trigger PUSH1 interrupt. SW2 can be
used instead of connecting external switch to PF0 to trigger PUSH2 interrupt.

These interrupts are initiated on RISING or FALLING of signal which is to
provided through switches and as mentioned in program in “attachInterrupt” function.

PROCEDURE

1. Connections are given as per the circuit diagram.
2. Program is uploaded to ARM processor.
3. Output is verified in LEDs.
4. The main program execution is observed in Red and Green Leds continuously

blinking.
5. When pressing External interrupt switch Yellow Led is glowing for some time

due to interrupt is initiated.

PROGRAM

int ledRed=PE_1;
int ledGreen=PE_2;
int ledYellow=PE_3;
int interrCount=0;

void setup()
{
pinMode(ledRed, OUTPUT);
pinMode(ledGreen, OUTPUT);
pinMode(ledYellow, OUTPUT);

digitalWrite(ledRed, LOW);
digitalWrite(ledGreen, LOW);
digitalWrite(ledYellow, LOW);

pinMode(PUSH2, INPUT_PULLUP);

attachInterrupt(PUSH2, interruptBlink, RISING);
}
void loop()

{
interrCount++;

digitalWrite(ledRed, HIGH);
digitalWrite(ledGreen, LOW);
delay(300);
digitalWrite(ledRed, LOW);
digitalWrite(ledGreen, HIGH);
delay(300);

if (interrCount == 10)
{

interrCount = 0;
digitalWrite(ledYellow, LOW);

}
}
void interruptBlink()

{
digitalWrite(ledYellow, HIGH);

}
CIRCUIT DIAGRAM

INPUT

HIGH and LOW signal to Red and Green Led
HIGH signal to Yellow Led when interrupt is triggered

OUTPUT

Red and Green Led continuously blinking
Yellow led blinking when External interrupt switch is pressed.

RESULT

Thus the implementation of interrupt is performed in ARM processor.

AIM

FLASHING OF LEDS WITH ARM PROCESSOR

To perform the flashing of LEDs with ARM processor

APPARATUS REQUIRED

1. ARM processor - TM4123GXL
2. Separate 5V power supply
3. LEDs – 5 nos
4. Bread Board
5. Connecting wires.

THEORY

5 LEDs are connected with ARM processor by individual digital pin. Program is
written to ON LEDs one by one then off all the LEDs at a time, then ON the LEDs one
by one, the same loop is operated. So the flashing of LEDs is done.

PROCEDURE

1. Connections are given as per the circuit diagram.
2. energia program is loaded into the ARM processor.
3. Output is observed in LEDs.
4. LEDs are gets ON one by one, then at a time all the LEDs are turned OFF, then

LEDs are gets ON one by one, loop is contined.

PROGRAM

int tonDelay=1000;
int toffDelay=500;

int LED1= PA_2;
int LED2= PA_3;
int LED3= PA_4;
int LED4= PE_0;

void setup()
{

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);
pinMode(LED4, OUTPUT);

}

void loop()
{

digitalWrite(LED1, HIGH);
delay(tonDelay);
digitalWrite(LED2,HIGH);
delay(tonDelay);
digitalWrite(LED3, HIGH);
delay(tonDelay);

digitalWrite(LED4,HIGH);
delay(tonDelay);
digitalWrite(LED1, LOW);
digitalWrite(LED2,LOW);
digitalWrite(LED3, LOW);
digitalWrite(LED4,LOW);
delay(toffDelay);

}

CIRCUIT DIAGRAM

INPUT

ON led1, ON led2, ON led3, ON led4, ON led5
OFF all LED, again same thing to be repeated

OUTPUT

LED1 gets ON, LED2 gets ON, LED3 gets ON, LED4 gets ON, LED5 gets ON
All LED is turned OFF, same thing is repeated

RESULT

Thus the flashing of LEDs by ARM processor is performed and verified.

Aim:

STEPPER MOTOR INTERFACING

To perform a speed control of stepper motor using ARM processor.

Apparatus required:

1. ARM processor TM4123GXL
2. Stepper motor with driver module
3. Separate 5V power supply

Theory:

A stepper motor is a brushless, synchronous electric motor that converts digital
pulses into mechanical shaft rotation. Every revolution of the stepper motor is divided
into a discrete number of steps, and the motor must be sent a separate pulse for each
step. Sequence 1100, 0110, 0011, 1001 sent to stepper from arm processor to rotate
in forward direction, sequence is reversed to rotate motor in reverse direction.

Procedure:

16. ARM processor USB is plugged with computer.
17. Digital output pins of ARM processor connected to the stepper motor driver.
18. Stepper motor sequence is programmed in energia.
19. Program is uploaded to ARM processor.
20. LED will glow in the given sequence.
21. Stepper motor rotation is observed.

Program:

Int S1 = PE1;
Int S2 = PE2;
Int S3 = PE3;
Int S4 = PF1;

void setup()
{

pinMode(S1,OUTPUT);
pinMode(S2,OUTPUT);
pinMode(S3,OUTPUT);
pinMode(S4,OUTPUT);
int i = 5; // 5 meant for 5 ms, speed operation

}

void loop()
{

//Sequence 1100
digitalWrite(S1,HIGH);
digitalWrite(S2,HIGH);
digitalWrite(S3,LOW);
digitalWrite(S4,LOW);
delay(i);

// sequence 0110
digitalWrite(S1,LOW);
digitalWrite(S2,HIGH);
digitalWrite(S3,HIGH);
digitalWrite(S4,LOW);
delay(i);

// sequence 0011
digitalWrite(S1,LOW);
digitalWrite(S2,LOW);
digitalWrite(S3,HIGH);
digitalWrite(S4,HIGH);
delay(i);

// sequence 1001
digitalWrite(S1,HIGH);
digitalWrite(S2,LOW);
digitalWrite(S3,LOW);
digitalWrite(S4,HIGH);
delay(i);

}

Circuit diagram:

INPUT/OUTPUT

1. For forward rotation sequence 1100, 0110, 0011, 1001 is used.
2. For reverse rotation sequence 1100, 1001, 0011, 0110 is used.
3. For speed operation, delay is set to 5ms.
4. For low speed operation, delay is set to 50ms.

RESULT:

Thus the stepper motor speed control is performed by interfacing stepper with
ARM processor.

INTERFACING TEMPERATURE SENSOR WITH ARM PROCESSOR

AIM
To interface temperature sensor with ARM processor and display the

temperature value.

APPARATUS REQUIRED

1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.
3. Temperature sensor – LM35
4. Bread Board.
5. Connecting wires

THEORY

LM35 temperature sensor has 3 pin 5v,temp out, GND. Out pin of sensor
connected to analog pin of ARM processor. In energia program is written to read
analog pin value and this scale value is multiplied with factor to get temperature value
in Celcius. It can be observed in serial monitor of energia

PROCEDURE

1. Connections are as per the circuit diagram.
2. Present room temperature is displayed in serial monitor.
3. Using heating medium temperature is increased around the LM35 temperature

sensor.
4. Observe the increase in temperature in serial monitor.

PROGRAM

float tempC;
int reading;
int tempPin =PE_3;
int INTERNAL;

void setup()
{
analogReference(INTERNAL);
Serial.begin(9600);
}

void loop()
{
reading = analogRead(tempPin);
tempC = reading / 9.31;
Serial.println(tempC);
delay(1000);
}

CIRCUIT DIAGRAM

INPUT
Apply Heat to Temperature sensor

OUTPUT
Increase in temperature is observed in serial monitor

32
35
37
40

RESULT

Thus the interfacing of temperature sensor is done and temperature changes are
observed.

